
A Facial Animation Interactive Framework with Facial Expressions, Lip
Synchronization and Eye Behavior

Rossana B. Queiroz Marcelo Cohen Soraia R. Musse

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681, Porto Alegre, RS, Brazil, 90619-900

Figure 1: Example of characters performance in our prototype during an expressive talk.

Abstract

In this paper we describe our approach of generating convincing
and empathetic facial animation. Our goal is to develop a robust
facial animation platform that can be scalable, usable and easily ex-
tended, in order to allow integration of research on the area and also
the direct incorporation of the characters in interactive applications,
such as Embodied Conversational Agents and games. We have de-
veloped a framework capable of animating MPEG-4 parametrized
faces easily through high-level description of facial actions and be-
haviors. We also present a case study which integrates computer
vision techniques in order to provide interaction between the user
and a character, that interacts with different facial actions according
to detected events in the application.

Keywords:: Facial Animation, MPEG-4, Facial Expressions, Lip
Synchronization, Eye Behavior, Interactivity, Facial Animation De-
scription Language

Author’s Contact:

{rossana.queiroz, marcelo.cohen, soraia.musse}@pucrs.br

1 Introduction

Animated virtual human faces have been widely used in many ap-
plications, such as movies, games and Embodied Conversational
Agents (ECAs). In all of these applications, characters’ reactions
should help in user immersion as well as to provide a believable
interaction. Thus the facial behavior coherence is very important,
to increase the credibility of the character.

Recent research on facial animation has lead to models that explore
expressiveness, communication and interactivity. Many of these
research are focused on ECA development [de Rosis et al. 2003;
Smid et al. 2004; Cosi et al. 2007; Huang et al. 2008] and provide
us a range of studies that correlate human psycho-social behavior
and facial animation. Together with a facial animation platform de-
velopment, we find several studies about face parameterization and
scripting languages for assisted and automatic animation genera-
tion [Perlin 1997; Cassell et al. 2001; Rutledge 2001; Arafa and
Mamdani 2002; Byun and Badler 2002; Carolis et al. 2004; Not
et al. 2005; Arya and DiPaola 2007; Vilhjálmsson et al. 2007].
Those studies have provided ways to the higher-level description
of a character’s face actions. Most of these languages are based on
XML and try to describe face actions in different levels, such as
attributing values of some specific parameters, or specifying more
complex behaviors which implicate the animation of various facial
attributes in a synchronized way.

We observe that in some works focused on complex facial models,
such as the physically-based animation by [Sifakis et al. 2005], the

implementation of the facial animation platform is constrained to
a single character model where all tests are performed on. In fact,
if a facial animation prototype is focused only on its main research
subject, it becomes difficult the addition of new functionalities or its
use in other environments or applications. Concerning the project
of a facial animation platform, we can emphasize some require-
ments in order to obtain a robust and usable tool:

• A consistent set of face animation parameters, which allows
us to get a satisfactory control of face attributes in different
faces;

• Minimal need of animator manual work, such as preparing a
set of animation keyframes to be interpolated;

• Mesh-deformation algorithms which produce realistic repre-
sentation of facial muscle actions;

• An interface which can be understood both by computer and
humans, enabling them to determine or edit characters’ ac-
tions;

• The real possibility of easy incorporation of the animated
faces in other applications;

• A framework which enables interactivity with real time an-
imation generation, without the need of previously recorded
animations.

In this context, our work presents an interactive facial anima-
tion framework which considers facial expressions, synchronized
speech and eye behavior generation where the users define the char-
acters’ actions by high-level description and can use the produced
animations on different face models. Our goal is to develop a robust
facial animation platform that can be easily extended, scalable and
usable in order to allow integration of other research on the area
and also the direct incorporation of the characters in interactive ap-
plications such as ECAs and games. Our main contribution is the
methodology of building an animation platform using free or open
source tools, integrating some known animation models and capa-
ble of generating a substantial amount of different face actions in
good quality animations.

This paper is organized as follows: the next section presents some
related work. Section 3 describes the architecture of our model and
the main technologies and tools that we have used for development
of the framework. In Section 3.4 we describe a case study: an inter-
active application where a character reacts according to detection
of the user’s face. Finally we make some final remarks and suggest
future work in order to improve and evaluate our model.

2 Related Work

Parameterization techniques for facial animation have been an area
of active research since Parke [Parke 1982]. We can identify in the

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 151

Facial
Animation

Module

Lip-synchronization
Module

Facial Expressions
Module

FAPs
Synchronization

Face Actions
Scripts

Eye Behavior
Module

FAP File
(.fap)

FAPs

FAPs

FAPs

Animation Engine
FDL2FAP

Interactive
Module

Face
Tracking

Data

Figure 2: Overall architecture diagram of the framework

literature two standards of parameter sets that are widely used in
facial animation works: Facial Coding System (FACS) [Ekman and
Friesen 1978] and the MPEG-4 Facial Animation (MPEG-4 FA)
[Pandzic and Forchheimer 2003]. However, these standards provide
a rather low-level basis for animators, as they describe the param-
eters as a set of pseudo-muscles which can be activated in a given
moment, producing a facial expression (Subsection 3.3 overviews
the MPEG-4 FA). Hence there are several efforts to produce a more
high-level parametric approach to generate facial animations in a ef-
fective way [Perlin 1997; Cassell et al. 2001; Rutledge 2001; Byun
and Badler 2002; Carolis et al. 2004; Not et al. 2005; Arya and
DiPaola 2007].

In the bibliography, we can also find some works that describe their
facial animation frameworks, which aim to provide a desirable plat-
form for facial animation research or the development of talking
heads applications. Wang [Wang et al. 2007] describes a methodol-
ogy to build an expressive facial animation system with lip synchro-
nization using affordable off-the-shelf components. This include
the FaceGen Modeller1 software for face and key meshes genera-
tion, and the Microsoft Speech SDK 2 as the speech API.

Cosi [Cosi et al. 2005] proposes a facial animation toolkit imple-
mented in MATLAB3 created mainly to speed up the procedure for
building the LUCIA talking head [Cosi et al. 2007] through motion
capture techniques, translated to MPEG-4 parameters. Although
it seems to be a promising approach, it was built over proprietary
software.

DiPaola and Arya [DiPaola and Arya 2007] propose a facial an-
imation framework compatible with the MPEG-4 standard called
iFace, whose binaries are available on the web4. iFace allows in-
teractive non-verbal scenarios through a XML-based scripting lan-
guage called FML (Face Modeling Language) [Arya and DiPaola
2007], which allows both parallel and sequential description of face
actions. Face actions include talking, expressions, head movements
and low-level MPEG-4 parameters. Actually, iFace has been used
for behavioral animation studies in order to reach a comprehensive
association of facial actions to personality types, creating a higher-
level facial parameter set in a personality-space [Arya et al. 2006].

Balci et al. [Balci et al. 2007] designs Xface, a set of open source
tools for creation of talking heads using MPEG-4 and keyframe-
based animation driven by the SMIL-Agent scripting language. The
toolkit is freely available 5 and aims to supply the lack of free and
open source tools for research as mentioned above. However, Xface
uses the SMIL-Agent scripting language for its keyframe-based an-
imation module. In other words, for each face model it is necessary
a set of corresponding key-meshes with the different facial expres-
sions and visemes.

Our approach uses Xface as the facial animation engine and in-

1http://www.facegen.com/
2http://www.microsoft.com/speech/download/sdk51
3http://www.mathworks.com/
4http://ivizlab.sfu.ca/research/iface/
5http://xface.itc.it/

tegrates a model to generate MPEG-4 animation automatically
through facial actions scripts with lip synchronization [Rodrigues
2007] and eye behaviors [Queiroz et al. 2007], without the need of
keyframing meshes. Moreover, in our framework external controls
are possible in order to interactively define characters’ actions. As
a case study of the framework capabilities, we have developed a
simple application where the character eye movements are driven
by detection of the user’s face, in an approach slightly similar to
[Courty et al. 2003].

3 Model

This section presents the overall architecture of our framework, as
well the scripting language for the description of facial actions. We
also present the approach to animation synthesis and interactivity.

3.1 Architecture

The overall architecture of our framework is presented in Figure 2.
The input for the Animation Engine is a script file containing the
description of one or more facial actions. Our scripting language is
called FDL (Face Description Language) hence we name our script
files as FDL files. The Animation Engine interprets the facial ac-
tions within a FDL file and generates the animation according to
them. In the current stage of our research, the FDL files can de-
scribe a sequence of three types of high-level face actions: talk-
ing, facial expressions and eye behaviors. Each of these types of
face actions are independent, and the processing of them in our
Animation Engine is performed by three different modules: Lip-
Synchronization Module, Facial Expression Module and Eye Be-
havior Module. This provides the values of each MPEG-4 facial
animation parameter (FAP) corresponding to the desired facial ac-
tions through time. After this step, the FAPs Synchronization Mod-
ule receive the FAP values and resolves possible conflicts among
them, such as making the combination of facial expressions and
visemes. The output is a FAP file containing the final animation,
which can run on any MPEG-4 compliant player and with differ-
ent face models. Our Facial Animation Module uses Xface for the
facial animation synthesis (described in Subsection 3.3).

The Eye Behavior Module, whose architecture is illustrated in Fig-
ure 3 contains the implementation of [Queiroz et al. 2007] a model
for automatic generation of eye animation. This provides a set
of eye behaviors which can be used in combination with different
affective states. The model uses a known statistical model [Lee
et al. 2002] (Default Model) as a saccadic eye movement engine
and creates differentiated behaviors (Behavioral Database) through
changes in the gaze parameters, such as direction, magnitude and
interval between movements. Saccadic movements (or saccades)
are rapid movements of both eyes from one gaze position to an-
other [Lee et al. 2002].

Eye behaviors are described as high-level actions in FDL scripts.
When combined with facial expressions, they contribute for in-
creasing both the expressiveness and engagement in communica-

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 152

tion. The Expressive Gaze Generator receives descriptions of face
actions and returns the FAP values for each gaze generated accord-
ing to the specified eye behavior, also providing head and eyelids
movements according to the model rules. The Interactive Module,
described in Subsection 3.4, can provide the input eye behavior se-
quence (e.g. following the user face) in a interactive way.

Modelo
Padrão

Gerador de Olhares Expressivos

Behavioral
Database

Default
Model

Expressive Gaze Generator

Face Action
Script

(for eyes)

Eye Behavior
Module

FAPs

Figure 3: Diagram of the Eye Behavior Module

The job of the Facial Expression Module (Figure 4) is simpler:
currently, it only produces facial expressions predefined as a set of
FAP values in the Emotional Database, representing “pure” emo-
tions. But the framework can be easily extended, in order to allow
new facial expressions and algorithms to generate derived expres-
sions. The facial expressions are also described as facial actions in
the FDL language.

Base de Dados

Gerador de Olhares Expressivos

Emotional
Database

Facial Expression Generator
Face Actions

Script
(expressions)

Facial Expressions
Module

FAPs

Figure 4: Diagram of the Facial Expressions Module

The Lip Synchronization Module follows the methodology de-
scribed in [Rodrigues 2007]. Basically the module receives a sound
file (.wav) as input, containing the character speech and an auxil-
iary file containing its textual description. For the generation of lip
animation, we use the CSLU Toolkit 6 which aligns the sound file
with the textual description and provides a file with the timeline of
the phonemes through time. This file is the input for the Phoneme-
Viseme Mapping Module, which connects the phonemes to their vi-
sual representation (visemes), according to [Rodrigues 2007]. The
CSLU toolkit alignment script generates 41 English phonemes that
are mapped to the 14 visemes specified in the MPEG-4 standard.
There is also an auxiliary “viseme” we have called silence to rep-
resent the pauses in speech. After this step, we have the complete
timeline of visemes, whose mapping to FAPs are carried out in the
Viseme-FAP Mapping Module. In this stage the blending of visemes
(i.e. the transition between two visemes) is also performed. For this
transition, we apply a linear interpolation between them. Figure 5
illustrates the architecture of this module.

After the three modules of the Animation Engine have finished, the
FAPs Synchronization Module receives the output FAP values and
resolves possible conflicts among them. Meanwhile, our frame-
work solves three types of conflicts:

6http://cslu.cse.ogi.edu/toolkit/

Audio
File (.wav)

Auxiliar
Text

CSLU
Toolkit

Phoneme timeline
file (.phn)

Phoneme-Viseme
Mapping

Viseme-FAP
Mapping

Communication
Scripts

Lip-sync
Module

FAPs

Facial Actions
Script

Figure 5: Diagram of the Lip Synchronization Module

1. Viseme-Expression conflict: occurs mainly in mouth region
FAPs, when the facial expression includes mouth movement.
To solve this conflict, we blend the mouth FAP streams gener-
ated by the Facial Expression and Lip Synchronization mod-
ules, in a weighted sum of them. Pyun [Pyun et al. 2003]
proposes that the weights for different visemes and expres-
sions should variate according to the “importance” of them.
However, in the current stage our framework uses the same
weights for all combinations of expressions and visemes, as
shown in equation 1. Therefore, each final FAP (Fi) will be
generated through the weighted sum of both expression (Ei)
and viseme (Vi) FAPs.

Fi =
Ei

4
+

3Vi

4
(1)

2. Eyes-Expression conflict: the Eye Behavior Module generates
eyelid movements related with the gaze direction and shift
[Queiroz et al. 2007]. But some facial expressions also in-
clude the eyelids conformation. In such cases, we also make a
weighted sum, as in the Viseme-Expression conflict (25% for
eye behavior and 75% for expression FAPs)

3. Head control: during FDL processing, some eye behaviors
lead to head movements. If that happens, the Eye Behavior
Module signals the FAPs Synchronization Module, which in
turn preserves the generated head FAPs. If there are no head
movements, then our framework provides an implementation
of Perlin Noise [Perlin 1985] to generate subtle head move-
ments instead of none, in order to approach a more realistic
head behavior.

We also include in our framework a more generic module we named
Interactive Module which is a hotspot to enable the inclusion of in-
teractive events detection and automatic generation of animation
with their respective characters’ responses in runtime. Through
this module, we can incorporate Virtual Reality approaches (e.g.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 153

through Computer Vision techniques), emotional models which
lead to facial expressions, Natural Language Processing techniques
to verbal or textual communication (e.g. a chat), and such. We can
also define rules of the interactivity of two or more virtual agents in
a simulation or game application.

3.2 Facial Description Language

In our previous work [Queiroz et al. 2007], we have encoded our
face actions as a high-level parameterized set of commands in Lua7

scripts we called Facial Description Language (FDL). We opted to
use Lua as auxiliary scripting language instead of XML-like nota-
tions (as SMIL-Agent and FML) for two reasons: i) Lua syntax is
clearer and its structure helps intuitively to understand the sequenc-
ing of actions; and ii) it is a powerful way to easily incorporate new
functionalities in the framework.

Our approach describes each expression, viseme or eye behavior as
a facial action which is triggered by script files supplied by an inter-
active application, or simply selected by an user. These script files
describe one or more face actions, which are interpreted, processed
and translated to low-level MPEG-4 Facial Animation Parameters
(FAPs). The main script file contains the information about the
speech (sound and text file names) and the scripts with the eye be-
havior and expressions “storyboard”, as shown below. If there is no
speech in the desired animations, the speechSound and speechText
fields should be filled with the "none" string value.

FDL = {
speakSound = "hastalavista.wav",
speakText = "hastalavista.txt",
expressionScript = "expressions.sb",
head = "default",
eyesScript = "eyes.sb",
output = "animation",

}

A sequence of facial expressions can be described as the script be-
low, which informs the desired expressions through time, with their
respective duration times in frames. The example shows some of
the facial expressions which are part of our Emotional Database.

expressions = {
{"joy", 100},
{"sadness",100},
{"surprise", 100},
{"anger", 50},
{"disgust",50},
{"fear",100},
{"trust",100},
{"tongueout",100},
{"inlove",100},
{"worry",100},
{"sleepy",100},

}

Similarly, the eye behavior sequence can be described as the exam-
ple below. The set of eye behaviors description and its parameters
are the same of GDL (Gaze Description Language) files of [Queiroz
et al. 2007] adding the “pursuit” behavior we describe in Section 4
in order to generate the eyes pursuit movement.

eyes = {
{"lookTo","left",17.0,"yes",50},
{"lookTo","upleft",10.0,"yes",150},
{"lookTo","up",15.0,"no",150},
{"lookTo","upright",7.0,"yes",50},
{"lookTo","right",15.0,"yes",50},
{"lookTo","downright",12.0,"no",50},
{"lookTo","down",12.0,"yes",50},
{"lookTo","downleft",12.0,"yes",50},
{"default", "talking", 0.9, 500},
{"concentration", 0.01,50},
{"discomfort", 0.99, 0.6,500},
{"distress", 0.5,400},
{"ironic", 0.5,50},

}

As we show above in the first FDL script, we generate mouth speech
animation automatically through a sound file and its textual de-
scription. After the phoneme-viseme mapping, our system gener-
ates a FDL script such as example below, which is processed by
the Viseme-FAP Module. This type of script can be alternatively

7http://www.lua.org

used for, e.g. the output of other speech-processing system, or
even edited manually. Following the same syntax of the other FDL
scripts, it describes the sequence of visemes through time.

Sentence = {
{"silence", 11},
{"A", 6},
{"kg", 1},
{"Q", 1},
{"nl", 3},
{"sz", 3},
{"I", 6},
{"A", 2},
{"silence", 27},

}

3.3 Animation Platform

Our framework follows the MPEG-4 Facial Animation standard for
face and animation parameterization. The MPEG-4 FA describes
the steps for creation of an animated face by definition of a set of
parameters in a standardized way. First, MPEG-4 defines 84 feature
points (the FPs - see Figure 6) placed on a character head, which in
turn define animation parameters, as well as calibrating the models
when they are exchanged between different players.

Figure 6: MPEG-4 Feature Points

In the standard, 68 values (the Facial Animation Parameters, or
FAPs) define the deformation between two frames of animation.
The first two suit a framework with high level parameters, repre-
senting visemes and the six basic emotions defined by Ekman [Ek-
man 1999]. The next ones deal with specific regions on the face,
as left eyebrow, right corner lip, tongue tip, etc. FAP values are
independent of model geometry. For this reason, FAPs have to be
calibrated prior to use on a face model. This is done using Face An-
imation Parameter Units (FAPU, illustrated in Figure 7) which are
defined as fractions of distances between key facial features. More-
over, the information about the 3D model is provided through the
Facial Definition Parameters (FDPs) which allow one to configure
the 3D facial model to be used at the receiver, either by adapting
a previously available model or by sending a new model. The new
or the adapted model is then animated by means of FAPs [Abrantes
and Pereira 1999; Balci 2004].

Each model geometry has its own FAPU and every FAP value is

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 154

calibrated by a corresponding FAPU value as defined in the stan-
dard. Together with FPs, they serve to achieve independence of the
face model for MPEG-4 players [Balci 2004]. Figure 8 illustrates
the FAP file format, which can be read by any MPEG-4 compliant
player.

Figure 7: MPEG-4 FAPU

We use Xface as the MPEG-4 FA engine which plays the FAP an-
imation generated by the Animation Engine Module. The Xface
toolkit is implemented in C++ using the OpenGL API and incorpo-
rates four pieces of software [Balci et al. 2007]: i) the Xface core
library, which enables the developers to embed 3D facial animation
into their applications; ii) XfaceEd, an authoring tool to generate
MPEG-4 parameterized meshes; iii); Xface Player, a sample appli-
cation that demonstrates the toolkit in action; and iv) XfaceClient,
which allows remote network control of XfacePlayer. Our Fa-
cial Animation framework module is implemented over the Xface-
Player, adding a FDL loader function and integrated to the Interac-
tive Module, as we describe in Subsection 3.4. Our 3D face mod-
els were generated in FaceGen Modeller, and body and hair was
modeled by artists. Our faces were parameterized according to the
MPEG-4 standard using the XfaceEd tool. XfaceEd generates a
configuration file containing FAPU and FDP data, which are read
by XfacePlayer to open a face model.

Generated_by_FDL2FAP 25 100

0 0 1 1 1 1 1 1 1 ... 0 1

0 0 -24 10 17 17 -24 -24 ...

0 0 1 1 1 1 1 1 1 ...

1 0 10 10 0 0 10 10 ...

...

0 0 1 1 1 1 1 1 1 ...

99 0 -10 10 0 0 -10 -10 ...

Frame rate Number of frames

Frame 0

Frame 1

Frame 99

Streams of 68 FAPs

Bit mask: FAPs used in frame
Used FAPs values in frameFrame

number

Figure 8: FAP file scheme

Figure 1 illustrates the visual results during the performance of
some scripted expressive talks. The 3D model independence of
our generated animations is illustrated in Figure 9, which shows
our two different characters performing the same facial expressions
(i.e. playing the same generated FAP file for both characters).

3.4 Interactivity

In our prototype, we can currently generate new animations by two
ways:

• loading FDL files, which calls the FDL processing routines
and then runs the generated FAP file; or

• enabling our Interactive Module to detect events and generate
runtime specific FDL/FAP files with the respective character
responses for these events.

The next section presents a case study in which our framework
was extended to an interactive application using a Computer Vision
technique to drive the animation of a character’s eye.

Figure 9: Performance of facial expressions by two different char-
acters in our system.

4 A Case Study: Following Faces

As we described in the previous sections, a robust facial animation
platform should be extensible enough to allow the developers to
build its applications in an effective way. When referring to facial
animation, we see that many applications need automatic runtime
generation of animation generation, in order to produce coherent
characters’ reactions throughout the interaction with other agents
or users.

In order to provide support for these features, we have extended our
framework with the Interactive Module and created an interactive
application that generates eye motion driven by Computer Vision
techniques. Specifically, our interactive application presents a vir-
tual character, which follows the user’s face through gaze behavior.
The module that detects and tracks the user’s face employs the face

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 155

detection method provided by the OpenCV8 Computer Vision li-
brary as a starting point [Viola and Jones 2001].

The face tracker runs on a separate thread, hence face detection
data is readily available. The OpenCV detection function returns
the location and the face radius (in pixels) of all recognized faces,
but at this moment we consider just the face which is closest to the
virtual character, i.e. the face with the largest radius. Based on this
information, the direction and magnitude (angle of eyeball rotation)
of the virtual character’s eyes are calculated as follows:

1. Obtain x and y coordinates from the face tracker for the clos-
est face. These coordinates are converted to the range [−1, 1]
(zero being the center of the camera image).

2. Determine gaze direction independently for x and y:

• If x < −0.1 we assume that the face is towards the
right side of the camera image. This is 10% of the right
half size, so very small face movements will not cause
any change in the eye direction. Note that the meaning
is reversed, as the camera image is normally mirrored.

• Likewise, if x > 0.1 then the face is towards the left
side of the camera image. The process is carried out
similarly for y.

3. Now to determine the direction, we just combine the vertical
and horizontal information. This produces one out of eight
discrete directions (up, up and left, left, etc).

4. Finally, the magnitude is computed through the Euclidean dis-
tance of the face to the center of the camera image, scaled by
a factor of 20. This produces roughly 12-15 degrees of hori-
zontal and vertical rotation, as the face tracker does not return
coordinates for faces that are very close to the edges of the
screen, as there is not enough data.

After that, these parameters are used to generate an eye behavior
FDL script file, which is processed by the Animation Engine Mod-
ule. Note that there is a single computation for both eyes: we as-
sume, for the purposes of this test application, that the user will
never get too close to the camera, thus the virtual character eyes
will never need to converge inwards.

In order to make the virtual character’s gaze follow the user’s face,
a new gaze behavior was implemented. This behavior (called pur-
suit), allows eyeball rotation without returning to a central position,
allowing continuity between eye’s face actions. Pursuit movements
occur when the eyes follow a moving object, either voluntarily or
involuntarily. They are quite different from saccadic movement:
they are smooth, slower and have a smaller latency [Lee et al. 2002].
After each face detection, a FDL script is generated, as shown in the
example below:

eyes = {
{"pursuit","right",17.0,"yes",50},
}

The parameters recognized by the pursuit behavior are the follow-
ing:

• gaze direction (2D rotation axis), described in a textual rep-
resentation as eight discretized directions (such as 0◦, 45◦,
90◦as “left”, “upleft”,“right”). The use of this discretized val-
ues is inherited of the Default Model implementation of the
model developed by [Lee et al. 2002];

• magnitude angle of eyeball rotation;

• a yes/no value indicating if the head should follow eye move-
ment or not;

• duration (in frames).

Figure 10 illustrates our “Following Faces” application.

8http://sourceforge.net/projects/opencvlibrary/

5 Final Remarks

This paper presents an interactive facial animation framework
which considers facial expressions, synchronized speech and eye
behavior generation where the users define the characters’ actions
by high-level description. For animation generation, we follow the
MPEG-4 Facial Animation standard. Consequently, the generated
animations can be used in different face models. We also present a
case study that incorporates Computer Vision techniques in a sim-
ple Virtual Reality application, in which character’s interacts with
user following his/her face with gaze behavior. This application
shows that our Interactive Module is promising for the incorpora-
tion of different events and runtime interactive issues.

As future work, we aim to:

• improve the Facial Expression Module;

• provide head control, also allowing independent head motion
as facial actions (head behaviors);

• support visemes from other languages;

• incorporate a GUI tool for editing facial actions in an easier
way;

• evaluate some framework features with subjects.

In summary, our visual results show that in the current stage of de-
velopment, our approach is promising, since our framework allows
the integration of other research on the area and also provides in-
teractive control of characters for applications such as ECAs and
games.

Acknowledgements

This work was developed in collaboration with HP Brazil R&D.
Thanks to Prof. Avelino Zorzo for providing his pictures.

References

ABRANTES, G., AND PEREIRA, F. 1999. Mpeg-4 facial animation
technology: survey, implementation, and results. Circuits and
Systems for Video Technology, IEEE Transactions on 9, 2 (Mar),
290–305.

ARAFA, Y., AND MAMDANI, A. 2002. Multi-modal embod-
ied agents scripting. Multimodal Interfaces, IEEE International
Conference on 0, 454.

ARYA, A., AND DIPAOLA, S. 2007. Face modeling and animation
language for mpeg-4 xmt framework. Multimedia, IEEE Trans-
actions on 9, 6 (Oct.), 1137–1146.

ARYA, A., JEFFERIES, L. N., ENNS, J. T., AND DIPAOLA, S.
2006. Facial actions as visual cues for personality: Research
articles. Comput. Animat. Virtual Worlds 17, 3-4, 371–382.

BALCI, K., NOT, E., ZANCANARO, M., AND PIANESI, F. 2007.
Xface open source project and smil-agent scripting language
for creating and animating embodied conversational agents. In
MULTIMEDIA ’07: Proceedings of the 15th international con-
ference on Multimedia, ACM, New York, NY, USA, 1013–1016.

BALCI, K. 2004. Xface: Mpeg-4 based open source toolkit for 3d
facial animation. In AVI ’04: Proceedings of the working confer-
ence on Advanced visual interfaces, ACM Press, New York, NY,
USA, 399–402.

BYUN, M., AND BADLER, N. I. 2002. Facemote: qualitative para-
metric modifiers for facial animations. In SCA ’02: Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM, New York, NY, USA, 65–71.

CAROLIS, B. D., PELACHAUD, C., POGGI, I., AND STEEDMAN,
M. 2004. Apml, a mark-up language for believable behavior
generation. H. Prendinger, ed., Life-like Characters., 65–85.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 156

Figure 10: Snapshots showing our application following user faces. The top right window shows the detection of the user’s face.

CASSELL, J., VILHJÁLMSSON, H. H., AND BICKMORE, T. 2001.
Beat: the behavior expression animation toolkit. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM, New York, NY,
USA, 477–486.

COSI, P., DRIOLI, C., TESSER, F., AND TISATO, G. 2005. Inter-
face toolkit: a new tool for building ivas. 75–87.

COSI, P., MAGNOCALDOGNETTO, E., AND TISATO, G.
2007. Emotional talking head: The development of
“lucia”. In CD Proceedings Workshop “Toni Mian”.
Available in http://www2.pd.istc.cnr.it/Papers/
PieroCosi/cp-TONI2007.pdf.

COURTY, N., BRETON, G., AND PELÉ, D. 2003. Embodied in
a look: Bridging the gap between humans and avatars. In IVA,
111–118.

DE ROSIS, F., PELACHAUD, C., POGGI, I., CAROFIGLIO, V.,
AND CAROLIS, B. D. 2003. From greta’s mind to her face:
modelling the dynamics of affective states in a conversational
embodied agent. Int. J. Hum.-Comput. Stud. 59, 1-2, 81–118.

DIPAOLA, S., AND ARYA, A. 2007. A framework for socially
communicative faces for game and interactive learning applica-
tions. In Future Play ’07: Proceedings of the 2007 conference
on Future Play, ACM, New York, NY, USA, 129–136.

EKMAN, P., AND FRIESEN, W. 1978. Facial Action Code System.
Consulting Psychologists Press, Inc., Palo Alto, CA.

EKMAN, P. 1999. Facial expressions. In Handbook of Cognition
and Emotion, Dalgleish and M. Power, Eds. John Wiley & Sons,
ch. 16.

HUANG, H.-H., NISHIDA, T., CEREKOVIC, A., PANDZIC, I. S.,
AND NAKANO, Y. 2008. The design of a generic framework
for integrating eca components. In AAMAS ’08: Proceedings of
the 7th international joint conference on Autonomous agents and
multiagent systems, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 128–135.

LEE, S. P., BADLER, J. B., AND BADLER, N. I. 2002. Eyes alive.
In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 637–644.

NOT, E., BALCI, K., PIANESI, F., AND ZANCANARO, M. 2005.
Synthetic characters as multichannel interfaces. In ICMI ’05:
Proceedings of the 7th international conference on Multimodal
interfaces, ACM, New York, NY, USA, 200–207.

PANDZIC, I. S., AND FORCHHEIMER, R., Eds. 2003. MPEG-4
Facial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons, Inc., New York, NY, USA.

PARKE, F. 1982. Parameterized models for facial animation. IEEE
Computer Graphics and Applications 2, 9, 61–68.

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3, 287–296.

PERLIN, K. 1997. Layered compositing of facial expression. In
ACM SIGGRAPH - Technical Sketch.

PYUN, H., KIM, Y., CHAE, W., KANG, H. W., AND SHIN,
S. Y. 2003. An example-based approach for facial expres-
sion cloning. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
167–176.

QUEIROZ, R. B., BARROS, L. M., AND MUSSE, S. R. 2007.
Providing expressive gaze to virtual animated characters in in-
teractive applications. In SBGames 2007, vol. 1, 197–206.

RODRIGUES, P. S. L. 2007. Um Sistema de Geração de Expressões
Faciais Dinâmicas em Animações Faciais 3D com Processa-
mento de Fala. PhD thesis, Pontifícia Universidade Católica do
Rio de Janeiro.

RUTLEDGE, L. 2001. Smil 2.0: Xml for web multimedia. Internet
Computing, IEEE 5, 5 (Sep/Oct), 78–84.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 157

SIFAKIS, E., NEVEROV, I., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. ACM Trans. Graph. 24, 3, 417–425.

SMID, K., PANDZIC, I., AND RADMAN, V. 2004. Autonomous
speaker agent. Proceedings of Computer Animation and Social
Agents Conference (CASA’04) (July).

VILHJÁLMSSON, H., CANTELMO, N., CASSELL, J., CHAFAI,
N. E., KIPP, M., KOPP, S., MANCINI, M., MARSELLA, S.,
MARSHALL, A. N., PELACHAUD, C., RUTTKAY, Z., THÓRIS-
SON, K. R., VAN WELBERGEN, H., AND VAN DER WERF, R. J.
2007. The behavior markup language: Recent developments and
challenges. In Intelligent Virtual Agents. Springer Link.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on 1, I–511–I–518 vol.1.

WANG, A., EMMI, M., AND FALOUTSOS, P. 2007. Assembling
an expressive facial animation system. In Sandbox ’07: Proceed-
ings of the 2007 ACM SIGGRAPH symposium on Video games,
ACM, New York, NY, USA, 21–26.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 158

